The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, the relationships between metric spaces and -metrizable spaces are established in terms of certain quotient mappings, which is an answer to Alexandroff’s problems.
In this note we study the relation between -spaces and -spaces and prove that a -space with a -hereditarily closure-preserving -network consisting of compact subsets is a -space, and that a -space with a point-countable -network consisting of compact subsets need not be a -space.
The concepts of -systems, -networks and -covers were defined by A. Arhangel’skiǐ in 1964, P. O’Meara in 1971 and R. McCoy, I. Ntantu in 1985, respectively. In this paper the relationships among -systems, -networks and -covers are further discussed and are established by -systems. As applications, some new characterizations of quotients or closed images of locally compact metric spaces are given by means of -systems.
Download Results (CSV)