Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Global asymptotic stability for half-linear differential systems with coefficients of indefinite sign

Jitsuro SugieMasakazu Onitsuka — 2008

Archivum Mathematicum

This paper is concerned with the global asymptotic stability of the zero solution of the half-linear differential system x ' = - e ( t ) x + f ( t ) φ p * ( y ) , y ' = - g ( t ) φ p ( x ) - h ( t ) y , where p > 1 , p * > 1 ( 1 / p + 1 / p * = 1 ), and φ q ( z ) = | z | q - 2 z for q = p or q = p * . The coefficients are not assumed to be positive. This system includes the linear differential system 𝐱 ' = A ( t ) 𝐱 with A ( t ) being a 2 × 2 matrix as a special case. Our results are new even in the linear case ( p = p * = 2 ). Our results also answer the question whether the zero solution of the linear system is asymptotically stable even when Coppel’s condition does not hold...

Page 1

Download Results (CSV)