The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
By a celebrated theorem of Harbater and Pop, the regular inverse Galois problem is
solvable over any field containing a large field. Using this and the Mordell conjecture for function fields, we construct the first example of a field over which the regular inverse Galois problem can be shown to be solvable, but such that does not contain a large field. The paper is complemented by model-theoretic observations on the diophantine nature of the regular inverse Galois problem.
Download Results (CSV)