Singular cardinals and strong extenders
We investigate the circumstances under which there exist a singular cardinal µ and a short (κ,µ)-extender E witnessing “κ is µ-strong”, such that µ is singular in Ult(V, E).
We investigate the circumstances under which there exist a singular cardinal µ and a short (κ,µ)-extender E witnessing “κ is µ-strong”, such that µ is singular in Ult(V, E).
If an extension V ⊆ V̅ satisfies the δ approximation and cover properties for classes and V is a class in V̅, then every suitably closed embedding j: V̅ → N̅ in V̅ with critical point above δ restricts to an embedding j ↾ V amenable to the ground model V. In such extensions, therefore, there are no new large cardinals above δ. This result extends work in [Ham01].
Page 1