The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

The distribution of powers of integers in algebraic number fields

Werner Georg NowakJohannes Schoißengeier — 2004

Journal de Théorie des Nombres de Bordeaux

For an arbitrary (not totally real) number field K of degree 3 , we ask how many perfect powers γ p of algebraic integers γ in K exist, such that μ ( τ ( γ p ) ) X for each embedding τ of K into the complex field. ( X a large real parameter, p 2 a fixed integer, and μ ( z ) = max ( | Re ( z ) | , | Im ( z ) | ) for any complex z .) This quantity is evaluated asymptotically in the form c p , K X n / p + R p , K ( X ) , with sharp estimates for the remainder R p , K ( X ) . The argument uses techniques from lattice point theory along with W. Schmidt’s multivariate extension of K.F. Roth’s result on the approximation...

Page 1

Download Results (CSV)