The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is shown that for any quantum logic one can find a concrete logic and a surjective homomorphism from onto such that maps the centre of onto the centre of . Moreover, one can ensure that each finite set of compatible elements in is the image of a compatible subset of . This result is “best possible” - let a logic be the homomorphic image of a concrete logic under a homomorphism such that, if is a finite subset of the pre-image of a compatible subset of , then is compatible....
In this note we show that, for an arbitrary orthomodular lattice , when is a faithful, finite-valued outer measure on , then the Kalmbach measurable elements of form a Boolean subalgebra of the centre of .
Download Results (CSV)