Extensions of a Fourier multiplier theorem of Paley, II
We show that, if the coefficients (an) in a series tend to 0 as n → ∞ and satisfy the regularity condition that , then the cosine series represents an integrable function on the interval [-π,π]. We also show that, if the coefficients (bn) in a series tend to 0 and satisfy the corresponding regularity condition, then the sine series represents an integrable function on [-π,π] if and only if . These conclusions were previously known to hold under stronger restrictions on the sizes of the differences...
Page 1