The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove that the pseudovariety of monoids of Krohn-Rhodes complexity at most is not finitely based for all . More specifically, for each pair of positive integers , we construct a monoid of complexity , all of whose -generated submonoids have complexity at most .
We prove that the pseudovariety of monoids of Krohn-Rhodes
complexity at most is not finitely based for all . More
specifically, for each pair of positive integers , we
construct a monoid of complexity , all of whose -generated
submonoids have complexity at most .
Download Results (CSV)