On a criterion of Yakubovich type for the absolute stability of nonautonomous control processes.
For linear control systems with coefficients determined by a dynamical system null controllability is discussed. If uniform local null controllability holds, and if the Lyapounov exponents of the homogeneous equation are all non-positive, then the system is globally null controllable for almost all paths of the dynamical system. Even if some Lyapounov exponents are positive, an irreducibility assumption implies that, for a dense set of paths, the system is globally null controllable.
We take as given a real symmetric matrix A, whose graph is a tree T, and the eigenvalues of A, with their multiplicities. Each edge of T may then be classified in one of four categories, based upon the change in multiplicity of a particular eigenvalue, when the edge is removed (i.e. the corresponding entry of A is replaced by 0).We show a necessary and suficient condition for each possible classification of an edge. A special relationship is observed among 2-Parter edges, Parter edges and singly...
A copositive matrix A is said to be exceptional if it is not the sum of a positive semidefinite matrix and a nonnegative matrix. We show that with certain assumptions on A−1, especially on the diagonal entries, we can guarantee that a copositive matrix A is exceptional. We also show that the only 5-by-5 exceptional matrix with a hollow nonnegative inverse is the Horn matrix (up to positive diagonal congruence and permutation similarity).
Page 1 Next