Some pseudovariety joins involving the pseudovariety of finite groups.
Given a basis of pseudoidentities for a pseudovariety of ordered semigroups containing the 5-element aperiodic Brandt semigroup , under the natural order, it is shown that the same basis, over the most general graph over which it can be read, defines the global. This is used to show that the global of the pseudovariety of level of Straubing-Thérien’s concatenation hierarchy has infinite vertex rank.
Given a basis of pseudoidentities for a pseudovariety of ordered semigroups containing the 5-element aperiodic Brandt semigroup , under the natural order, it is shown that the same basis, over the most general graph over which it can be read, defines the global. This is used to show that the global of the pseudovariety of level of Straubing-Thérien's concatenation hierarchy has infinite vertex rank.
We show that semigroups representable by triangular matrices over a fixed finite field form a decidable pseudovariety and provide a finite pseudoidentity basis for it.
We show that semigroups representable by triangular matrices over a fixed finite field form a decidable pseudovariety and provide a finite pseudoidentity basis for it.
Page 1