On extended frames
Some aspects of extended frames are studied, namely, the behaviour of ideals, covers, admissible systems of covers and uniformities.
Some aspects of extended frames are studied, namely, the behaviour of ideals, covers, admissible systems of covers and uniformities.
In pointfree topology, the notion of uniformity in the form of a system of covers was introduced by J. Isbell in [11], and later developed by A. Pultr in [14] and [15]. Another equivalent notion of locale uniformity was given by P. Fletcher and W. Hunsaker in [6], which they called “entourage uniformity”. The purpose of this paper is to formulate and investigate an alternative definition of entourage uniformity which is more likely to the Weil pointed entourage uniformity, since it is expressed...
More precisely, we are analyzing some of H. Simmons, S. B. Niefield and K. I. Rosenthal results concerning sublocales induced by subspaces. H. Simmons was concerned with the question when the coframe of sublocales is Boolean; he recognized the role of the axiom for the relation of certain degrees of scatteredness but did not emphasize its role in the relation between sublocales and subspaces. S. B. Niefield and K. I. Rosenthal just mention this axiom in a remark about Simmons’ result. In this...
We present very short and simple proofs of such facts as co-frame distributivity of sublocales, zero-dimensionality of the resulting co-frames, Isbell’s Density Theorem and characteristic properties of fit and subfit frames, using sublocale sets.
Page 1