The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
En este trabajo damos condiciones necesarias y suficientes para que una función de medias sea de tipo discreto y obtenemos una relación entre la función de distribución y su correspondiente función de medias en este caso. Se estudia la relación entre el caso discreto y el caso continuo.
En un trabajo anterior [6], se estudiaron las funciones de medias de distribuciones generales. En el presente trabajo, limitándonos a distribuciones de tipo continuo, se resuelve completamente la caracterización de las funciones de medias y el problema de inversión de la transformación funcional que se estudia.
Download Results (CSV)