The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let R be an associative ring with 1 and R-tors the somplete Brouwerian lattice of all hereditary torsion theories on the category of left R-modules. A well known result asserts that R is a left semiartinian ring iff R-tors is a complete atomic Boolean lattice. In this note we prove that if L is a complete atomic Boolean lattice then there exists a left semiartinian ring R such that L is lattice-isomorphic to R-tors.
Download Results (CSV)