Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Computer identification of plane regions

Jozef Zámožík — 1982

Aplikace matematiky

This paper gives a simple algorithm for the identification of the insidedness and the autsidedness of a plane bounded region. The region can be the union, intersection or difference of an arbitrary number of k -tuple connected regions.

Konstruktionen der linearen Perspektive mit der Anwendung des Trilinearsystemes

Jozef Zámožík — 1970

Aplikace matematiky

Gegeben seien 1. drei nichtkollineare, bzw. 2. kollineare Projektionsmittelpunkte und die Projektionsebene. Dann gilt: 1. Eine von der Projektionen des Punkters kann man mittels der übrigen Projektionen und der zugehörigen Kernpunkte konstruieren (Schneidendemethode). 2. Vier Punkte: der Kernpunkt und drei Mitten haben dasselbe Doppelverhältnis wie die vier folgende Punkte: der Kernpunkt und drei Projektionen des Punktes. Daraus folgt eine Erweiterung vom Eckhartschen Satz und Konstruktionen mit...

Finite nondense point set analysis

Jozef ZámožíkMária Mišútová — 1993

Applications of Mathematics

The paper deals with the decomposition and with the boundarz and hull construction of the so-called nondense point set. This problem and its applications have been frequently studied in computational geometry, raster graphics and, in particular, in the image processing (see e.g. [3], [6], [7], [8], [9], [10]). We solve a problem of the point set decomposition by means of certain relations in graph theory.

Testing of convex polyhedron visibility by means of graphs

Jozef ZámožíkViera Zat'ková — 1980

Aplikace matematiky

This paper follows the article by V. Medek which solves the problem of finding the boundary of a convex polyhedron in both parallel and central projections. The aim is to give a method which yields a simple algorithm for the automation of an arbitrary graphic projection of a convex polyhedron. Section 1 of this paper recalls some necessary concepts from the graph theory. In Section 2 graphs are applied to determine visibility of a convex polyhedron.

Page 1

Download Results (CSV)