When is the Haar measure a Pietsch measure for nonlinear mappings?
We show that, as in the linear case, the normalized Haar measure on a compact topological group G is a Pietsch measure for nonlinear summing mappings on closed translation invariant subspaces of C(G). This answers a question posed to the authors by J. Diestel. We also show that our result applies to several well-studied classes of nonlinear summing mappings. In the final section some problems are proposed.