We report on a question, posed by L. Ornea and M. Verbitsky in [32], about examples of compact locally conformal symplectic manifolds without locally conformal Kähler metrics. We construct such an example on a compact 4-dimensional nilmanifold, not the product of a compact 3-manifold and a circle.
En este artículo se considera un marco general para la precuantización geométrica de una variedad provista de un corchete que no es necesariamente de Jacobi. La existencia de una foliación generalizada permite definir una noción de fibrado de precuantización. Se estudia una aproximación alternativa suponiendo la existencia de un algebroide de Lie sobre la variedad. Se relacionan ambos enfoques y se recuperan los resultados conocidos para variedades de Poisson y Jacobi.
Download Results (CSV)