The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We obtain new bounds for the integer Chebyshev constant of intervals [p/q, r/s] where p, q, r and s are non-negative integers such that qr - ps = 1. As a consequence of the methods used, we improve the known lower bound for the trace of totally positive algebraic integers.
[Proceedings of the Primeras Jornadas de Teoría de Números (Vilanova i la Geltrú (Barcelona), 30 June - 2 July 2005)].
Seven elliptic curves of the form y = x + B x and having rank at least 8 are presented. To find them we use the double descent method of Tate. In particular we prove that the curve with B = 14752493461692 has rank exactly 8.
Download Results (CSV)