We consider abstract second order evolution equations with unbounded
feedback with delay. Existence results are obtained under some
realistic assumptions. Sufficient and explicit conditions are derived that guarantee the exponential or polynomial stability. Some new examples that enter into our abstract framework are presented.
In this paper, we consider the approximation of second order evolution equations. It is well known that the approximated system by finite element or finite difference is not uniformly exponentially or polynomially stable with respect to the discretization parameter, even if the continuous system has this property. Our goal is to damp the spurious high frequency modes by introducing numerical viscosity terms in the approximation scheme. With these viscosity terms, we show the exponential or polynomial...
Download Results (CSV)