We study the subset in a unital C*-algebra composed of elements a such that is invertible, where denotes the Moore-Penrose inverse of a. A distinguished subset of this set is also investigated. Furthermore we study sequences of elements belonging to the aforementioned subsets.
È noto che se uno spazio di Banach è quasi-smooth (cioè, la sua applicazione di dualità è debolmente semicontinua superiormente in senso ristretto), allora il suo duale non ha sottospazi chiusi normanti propri. Inoltre, se uno spazio di Banach ha una norma equivalente la cui applicazione di dualità ha un grafo che contiene superiormente un'applicazione debolmente semicontinua superiormente in senso ristretto, allora lo spazio è Asplund. Dimostriamo che se uno spazio di Banach ha una norma equivalente...
Download Results (CSV)