A characterisation of Gorenstein orders in quarternition algebras.
We compute the numbers of locally principal ideals with given norm in a class of definite quaternion orders and the traces of the Brandt-Eichler matrices corresponding to these orders. As an application, we compute the numbers of representations of algebraic integers by the norm forms of definite quaternion orders with class number one as well as we obtain class number relations for some CM-fields.
Eichler's trace formula for traces of the Brandt-Eichler matrices is proved for arbitrary totally definite orders in central simple algebras of prime index over global fields. A formula for type numbers of such orders is proved as an application.
Let F be a Galois extension of a number field k with the Galois group G. The Brauer-Kuroda theorem gives an expression of the Dedekind zeta function of the field F as a product of zeta functions of some of its subfields containing k, provided the group G is not exceptional. In this paper, we investigate the exceptional groups. In particular, we determine all nilpotent exceptional groups, and give a sufficient condition for a group to be exceptional. We give many examples of nonnilpotent solvable...
Page 1