The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

A finiteness theorem for holomorphic Banach bundles

Jürgen Leiterer — 2007

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let E be a holomorphic Banach bundle over a compact complex manifold, which can be defined by a cocycle of holomorphic transition functions with values of the form id + K where K is compact. Assume that the characteristic fiber of E has the compact approximation property. Let n be the complex dimension of X and 0 q n . Then: If V X is a holomorphic vector bundle (of finite rank) with H q ( X , V ) = 0 , then dim H q ( X , V E ) < . In particular, if dim H q ( X , 𝒪 ) = 0 , then dim H q ( X , E ) < .

Uniform estimates for the Cauchy-Riemann equation on q -convex wedges

Christine Laurent-ThiébautJurgen Leiterer — 1993

Annales de l'institut Fourier

We study the -equation with Hölder estimates in q -convex wedges of n by means of integral formulas. If D n is defined by some inequalities { ρ i 0 } , where the real hypersurfaces { ρ i = 0 } are transversal and any nonzero linear combination with nonnegative coefficients of the Levi form of the ρ i ’s have at least ( q + 1 ) positive eigenvalues, we solve the equation f = g for each continuous ( n , r ) -closed form g in D , n - q r n , with the following estimates: if d denotes the distance to the boundary of D and if d β g is bounded, then for all ϵ > 0 ,...

Page 1

Download Results (CSV)