The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We define and investigate Ringel-Hall algebras of coalgebras (usually infinite-dimensional). We extend Ringel's results [Banach Center Publ. 26 (1990) and Adv. Math. 84 (1990)] from finite-dimensional algebras to infinite-dimensional coalgebras.
Assume that K is an arbitrary field. Let (I,⪯) be a poset of finite prinjective type and let KI be the incidence K-algebra of I. A classification of all sincere posets of finite prinjective type with three maximal elements is given in Theorem 2.1. A complete list of such posets consisting of 90 diagrams is presented in Tables 2.2. Moreover, given any sincere poset I of finite prinjective type with three maximal elements, a complete set of pairwise non-isomorphic sincere indecomposable prinjective...
Assume that K is an arbitrary field. Let (I, ⪯) be a two-peak poset of finite prinjective type and let KI be the incidence algebra of I. We study sincere posets I and sincere prinjective modules over KI. The complete set of all sincere two-peak posets of finite prinjective type is given in Theorem 3.1. Moreover, for each such poset I, a complete set of representatives of isomorphism classes of sincere indecomposable prinjective modules over KI is presented in Tables 8.1.
We prove that the monoid of generic extensions of finite-dimensional nilpotent k[T]-modules is isomorphic to the monoid of partitions (with addition of partitions). This gives us a simple method for computing generic extensions, by addition of partitions. Moreover we give a combinatorial algorithm that calculates the constant terms of classical Hall polynomials.
Let C be a coalgebra over an arbitrary field K. We show that the study of the category C-Comod of left C-comodules reduces to the study of the category of (co)representations of a certain bicomodule, in case C is a bipartite coalgebra or a coradical square complete coalgebra, that is, C = C₁, the second term of the coradical filtration of C. If C = C₁, we associate with C a K-linear functor that restricts to a representation equivalence , where is a coradical square complete hereditary bipartite...
Download Results (CSV)