The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the radius of convexity for a class of conformal maps

V. KarunakaranK. Bhuvaneswari — 2007

Colloquium Mathematicae

Let 𝓐 denote the class of all analytic functions f in the open unit disc 𝔻 in the complex plane satisfying f(0) = 0, f'(0) = 1. Let U(λ) (0 < λ ≤ 1) denote the class of functions f ∈ 𝓐 for which |(z/f(z))²f'(z) -1| < λ for z ∈ 𝔻. The behaviour of functions in this class has been extensively studied in the literature. In this paper, we shall prove that no member of U₀(λ) = {f ∈ U(λ): f''(0) = 0} is convex in 𝔻 for any λ and obtain a lower bound for the...

Page 1

Download Results (CSV)