A generalisation of Artin's conjecture for primitive roots
This paper is a continuation of a recent paper [2], in which the authors studied some Markov matrices arising from a mapping T:ℤ → ℤ, which generalizes the famous 3x+1 mapping of Collatz. We extended T to a mapping of the polyadic numbers and construct finitely many ergodic Borel measures on which heuristically explain the limiting frequencies in congruence classes, observed for integer trajectories.
Page 1