The radius of univalence and starlikeness of a certain class of analytic functions
Let Mₚ denote the class of functions f of the form , p a positive integer, in the unit disk E = |z| < 1, f being regular in 0 < |z| < 1. Let , α < 1, where . Results on are derived by proving more general results on differential subordination. These results reduce, by putting p =1, to the recent results of Al-Amiri and Mocanu.
The function (p ∈ ℕ = 1,2,3,...) analytic in the unit disk E is said to be in the class if (, where and h is convex univalent in E with h(0) = 1. We study the class and investigate whether the inclusion relation holds for p > 1. Some coefficient estimates for the class are also obtained. The class of functions satisfying the condition is also studied.
Page 1