We give an alternative proof of W. T. Gowers' theorem on block bases by reducing it to a discrete analogue on specific countable nets. We also give a Ramsey type result on k-tuples of block sequences in a normed linear space with a Schauder basis.
We introduce higher order spreading models associated to a Banach space X. Their definition is based on ℱ-sequences with ℱ a regular thin family and on plegma families. We show that the higher order spreading models of a Banach space X form an increasing transfinite hierarchy . Each contains all spreading models generated by ℱ-sequences with order of ℱ equal to ξ. We also study the fundamental properties of this hierarchy.
Download Results (CSV)