The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Capitulation and transfer kernels

K. W. GruenbergA. Weiss — 2000

Journal de théorie des nombres de Bordeaux

If K / k is a finite Galois extension of number fields with Galois group G , then the kernel of the capitulation map C l k C l K of ideal class groups is isomorphic to the kernel X ( H ) of the transfer map H / H ' A , where H = Gal ( K ˜ / k ) , A = Gal ( K ˜ / K ) and K ˜ is the Hilbert class field of K . H. Suzuki proved that when G is abelian, | G | divides | X ( H ) | . We call a finite abelian group X a transfer kernel for G if X X ( H ) for some group extension A H G . After characterizing transfer kernels in terms of integral representations of G , we show that X is a transfer kernel for...

Page 1

Download Results (CSV)