Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On Super (a, d)-H-Antimagic Total Covering of Star Related Graphs

K.M. KathiresanS. David Laurence — 2015

Discussiones Mathematicae Graph Theory

Let G = (V (G),E(G)) be a simple graph and H be a subgraph of G. G admits an H-covering, if every edge in E(G) belongs to at least one subgraph of G that is isomorphic to H. An (a, d)-H-antimagic total labeling of G is a bijection λ: V (G) ∪ E(G) → {1, 2, 3, . . . , |V (G)| + |E(G)|} such that for all subgraphs H′ isomorphic to H, the H′ weights [...] constitute an arithmetic progression a, a+d, a+2d, . . . , a+(n−1)d where a and d are positive integers and n is the number of subgraphs of G isomorphic...

Characterization Of Super-Radial Graphs

K.M. KathiresanG. MarimuthuC. Parameswaran — 2014

Discussiones Mathematicae Graph Theory

In a graph G, the distance d(u, v) between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius, r(G), of the graph and the maximum eccentricity is called the diameter, d(G), of the graph. The super-radial graph R*(G) based on G has the vertex set as in G and two vertices u and v are adjacent in R*(G) if the distance between them in G is greater than...

Page 1

Download Results (CSV)