2000 Mathematics Subject Classification: 46B20.
Uniform G-convexity of Banach spaces is a recently introduced natural generalization of uniform convexity and of complex uniform convexity. We study conditions under which uniform G-convexity of X passes to the space of X-valued functions Lp (m,X).
2000 Mathematics Subject Classification: Primary: 46B20. Secondary: 46H99, 47A12.
We estimate the (midpoint) modulus of convexity at the unit 1 of a Banach algebra A
showing that inf {max±||1 ± x|| − 1 : x ∈ A, ||x||=ε} ≥ (π/4e)ε²+o(ε²) as ε → 0.
We also give a characterization of two-dimensional subspaces of Banach algebras
containing the identity in terms of polynomial inequalities.
We answer two open questions concerning the recently introduced notions of slicely countably determined (SCD) sets and SCD operators in Banach spaces. An application to narrow operators in spaces with the Daugavet property is given.
We study classes of operators represented as a pointwise absolutely convergent series of simpler ones, starting with rank 1 operators. In this short note we address the question, how far the repetition of this procedure can lead.
We investigate rich subspaces of L₁ and deduce an interpolation property of Sidon sets. We also present examples of rich separable subspaces of nonseparable Banach spaces and we study the Daugavet property of tensor products.
We consider a general concept of Daugavet property with respect to a norming subspace. This concept covers both the usual Daugavet property and its weak* analogue. We introduce and study analogues of narrow operators and rich subspaces in this general setting and apply the results to show that a quotient of L₁[0,1] by an ℓ₁-subspace need not have the Daugavet property. The latter answers in the negative a question posed to us by A. Pełczyński.
The aim of this paper is to review the state-of-the-art of recent research concerning the numerical index of Banach spaces, by presenting some of the results found in the last years and proposing a number of related open problems.
A metric space (M,d) is said to have the small ball property (sbp) if for every ε₀ > 0 it is possible to write M as the union of a sequence (B(xₙ,rₙ)) of closed balls such that the rₙ are smaller than ε₀ and lim rₙ = 0. We study permanence properties and examples of sbp. The main results of this paper are the following: 1. Bounded convex closed sets in Banach spaces have sbp only if they are compact. 2. Precisely the finite-dimensional Banach spaces have sbp. (More generally: a complete metric...
The concept of lushness, introduced recently, is a Banach space property, which ensures that the space has numerical index 1. We prove that for Asplund spaces lushness is actually equivalent to having numerical index 1. We prove that every separable Banach space containing an isomorphic copy of c₀ can be renormed equivalently to be lush, and thus to have numerical index 1. The rest of the paper is devoted to the study of lushness just as a property of Banach spaces. We prove that lushness is separably...
Let X be a Banach space. We introduce a formal approach which seems to be useful in the study of those properties of operators on X which depend only on the norms of the images of elements. This approach is applied to the Daugavet equation for norms of operators; in particular we develop a general theory of narrow operators and rich subspaces of spaces X with the Daugavet property previously studied in the context of the classical spaces C(K) and L₁(μ).
Download Results (CSV)