The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we characterize both the Clifford and left Clifford ordered semigroups by their bi-ideals and quasi-ideals. Also we characterize principal bi-ideal generated by an ordered idempotent in a completely regular ordered semigroup.
An element of an ordered semigroup S is called an ordered idempotent if e ≤ e². Here we characterize the subsemigroup
is also regular. If S is a regular ordered semigroup generated by its ordered idempotents then every ideal of S is generated as a subsemigroup by ordered idempotents.
Download Results (CSV)