Spectral gap lower bound for the one-dimensional fractional Schrödinger operator in the interval
We prove a uniform lower bound for the difference λ₂ - λ₁ between the first two eigenvalues of the fractional Schrödinger operator , α ∈ (1,2), with a symmetric single-well potential V in a bounded interval (a,b), which is related to the Feynman-Kac semigroup of the symmetric α-stable process killed upon leaving (a,b). “Uniform” means that the positive constant appearing in our estimate is independent of the potential V. In the general case of α ∈ (0,2), we also find a uniform lower bound for...