Fourierova analýza dvojrozměrných terénních dat
Systems of parabolic differential equations are studied in the paper. Two a posteriori error estimates for the approximate solution obtained by the finite element method of lines are presented. A statement on the rate of convergence of the approximation of error by estimator to the error is proved.
The adjustment of one-dimensional space grid for a parabolic partial differential equation solved by the finite element method of lines is considered in the paper. In particular, the approach based on a posteriori error indicators and error estimators is studied. A statement on the rate of convergence of the approximation of error by estimator to the error in the case of a system of parabolic equations is presented.
The efficient evaluation of a discrete convolution is usually carried out as a repated evaluation of a discrete convolution of a special type with the help of the fast Fourier transform. The paper is concerned with the analysis of the roundoff errors in the fast computation of this convolution. To obtain a comparison, the roundoff errors in the usual (direct) computation of this convolution are also considered. A stochastic model of the propagation of roundoff errors. is employed. The theoretical...
The paper is concerned with the iterative solution of sparse linear algebraic systems by the Stone incomplete factorization. For the sake of clarity, the algorithm of the Stone incomplete factorization is described and, moreover, some properties of the method are derived in the paper. The conclusion is devoted to a series of numerical experiments focused on the choice of iteration parameters in the Stone method. The model problem considered showe that we can, in general, choose appropriate values...
Page 1 Next