The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Real closed exponential fields

Paola D'AquinoJulia F. KnightSalma KuhlmannKaren Lange — 2012

Fundamenta Mathematicae

Ressayre considered real closed exponential fields and “exponential” integer parts, i.e., integer parts that respect the exponential function. In 1993, he outlined a proof that every real closed exponential field has an exponential integer part. In the present paper, we give a detailed account of Ressayre’s construction and then analyze the complexity. Ressayre’s construction is canonical once we fix the real closed exponential field R, a residue field section k, and a well ordering ≺ on R. The...

Page 1

Download Results (CSV)