The first-order autoregressive model with uniform innovations is considered. In this paper, we study the bias-robustness and MSE-robustness of modified maximum likelihood estimator of parameter of the model against departures from distribution of white noise. We used the generalized Beta distribution to describe these departures.
The first-order autoregressive model with uniform innovations is considered. In this paper, we propose a family of BAYES estimators based on a class of prior distributions. We obtain estimators of the parameter which perform better than the maximum likelihood estimator.
The first-order autoregressive model with uniform innovations is considered. The approximate bias of the maximum likelihood estimator (MLE) of the parameter is obtained. Also, a formula for the approximate bias is given when a single outlier occurs at a specified time with a known amplitude. Simulation procedures confirm that our formulas are suitable. A small sample case is considered only.
The two sided unit root test of a first-order autoregressive model in the presence of an innovation outlier is considered. In this paper, we present three tests; two are usual and one is new. We give formulas computing the size and the power of the three tests when an innovation outlier (IO) occurs at a specified time, say k. Using a comparative study, we show that the new statistic performs better under contamination. A Small sample case is considered only.
Download Results (CSV)