A kernel-based learning algorithm combining kernel discriminant coordinates and kernel principal components
Kernel principal components (KPC) and kernel discriminant coordinates (KDC), which are the extensions of principal components and discriminant coordinates, respectively, from a linear domain to a nonlinear domain via the kernel trick, are two very popular nonlinear feature extraction methods. The kernel discriminant coordinates space has proven to be a very powerful space for pattern recognition. However, further study shows that there are still drawbacks in this method. To improve the performance...