The Kodaira dimension of the moduli space of Prym varieties
We study the enumerative geometry of the moduli space of Prym varieties of dimension . Our main result is that the compactication of is of general type as soon as and is different from 15. We achieve this by computing the class of two types of cycles on : one defined in terms of Koszul cohomology of Prym curves, the other defined in terms of Raynaud theta divisors associated to certain vector bundles on curves. We formulate a Prym–Green conjecture on syzygies of Prym-canonical curves....