Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Chromatic Sums for Colorings Avoiding Monochromatic Subgraphs

Ewa KubickaGrzegorz KubickiKathleen A. McKeon — 2015

Discussiones Mathematicae Graph Theory

Given graphs G and H, a vertex coloring c : V (G) →ℕ is an H-free coloring of G if no color class contains a subgraph isomorphic to H. The H-free chromatic number of G, χ (H,G), is the minimum number of colors in an H-free coloring of G. The H-free chromatic sum of G, ∑(H,G), is the minimum value achieved by summing the vertex colors of each H-free coloring of G. We provide a general bound for ∑(H,G), discuss the computational complexity of finding this parameter for different choices of H, and...

Rainbow connection in graphs

Gary ChartrandGarry L. JohnsKathleen A. McKeonPing Zhang — 2008

Mathematica Bohemica

Let G be a nontrivial connected graph on which is defined a coloring c E ( G ) { 1 , 2 , ... , k } , k , of the edges of G , where adjacent edges may be colored the same. A path P in G is a rainbow path if no two edges of P are colored the same. The graph G is rainbow-connected if G contains a rainbow u - v path for every two vertices u and v of G . The minimum k for which there exists such a k -edge coloring is the rainbow connection number r c ( G ) of G . If for every pair u , v of distinct vertices, G contains a rainbow u - v geodesic, then G is...

Page 1

Download Results (CSV)