The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Homotopy types of one-dimensional Peano continua

Katsuya Eda — 2010

Fundamenta Mathematicae

Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.

Homotopy and homology groups of the n-dimensional Hawaiian earring

Katsuya EdaKazuhiro Kawamura — 2000

Fundamenta Mathematicae

For the n-dimensional Hawaiian earring n , n ≥ 2, π n ( n , o ) ω and π i ( n , o ) is trivial for each 1 ≤ i ≤ n - 1. Let CX be the cone over a space X and CX ∨ CY be the one-point union with two points of the base spaces X and Y being identified to a point. Then H n ( X Y ) H n ( X ) H n ( Y ) H n ( C X C Y ) for n ≥ 1.

Covering maps over solenoids which are not covering homomorphisms

Katsuya EdaVlasta Matijević — 2013

Fundamenta Mathematicae

Let Y be a connected group and let f: X → Y be a covering map with the total space X being connected. We consider the following question: Is it possible to define a topological group structure on X in such a way that f becomes a homomorphism of topological groups. This holds in some particular cases: if Y is a pathwise connected and locally pathwise connected group or if f is a finite-sheeted covering map over a compact connected group Y. However, using shape-theoretic techniques and Fox's notion...

A construction of noncontractible simply connected cell-like two-dimensional Peano continua

Katsuya EdaUmed H. KarimovDušan Repovš — 2007

Fundamenta Mathematicae

Using the topologist sine curve we present a new functorial construction of cone-like spaces, starting in the category of all path-connected topological spaces with a base point and continuous maps, and ending in the subcategory of all simply connected spaces. If one starts from a noncontractible n-dimensional Peano continuum for any n > 0, then our construction yields a simply connected noncontractible (n + 1)-dimensional cell-like Peano continuum. In particular, starting from the circle 𝕊¹,...

Page 1

Download Results (CSV)