Slender modules, endo-slender abelian groups and large cardinals
Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.
For the n-dimensional Hawaiian earring n ≥ 2, and is trivial for each 1 ≤ i ≤ n - 1. Let CX be the cone over a space X and CX ∨ CY be the one-point union with two points of the base spaces X and Y being identified to a point. Then for n ≥ 1.
Let Y be a connected group and let f: X → Y be a covering map with the total space X being connected. We consider the following question: Is it possible to define a topological group structure on X in such a way that f becomes a homomorphism of topological groups. This holds in some particular cases: if Y is a pathwise connected and locally pathwise connected group or if f is a finite-sheeted covering map over a compact connected group Y. However, using shape-theoretic techniques and Fox's notion...
Using the topologist sine curve we present a new functorial construction of cone-like spaces, starting in the category of all path-connected topological spaces with a base point and continuous maps, and ending in the subcategory of all simply connected spaces. If one starts from a noncontractible n-dimensional Peano continuum for any n > 0, then our construction yields a simply connected noncontractible (n + 1)-dimensional cell-like Peano continuum. In particular, starting from the circle 𝕊¹,...
Page 1