The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Twists of Hessian Elliptic Curves and Cubic Fields

Katsuya Miyake — 2009

Annales mathématiques Blaise Pascal

In this paper we investigate Hesse’s elliptic curves H μ : U 3 + V 3 + W 3 = 3 μ U V W , μ Q - { 1 } , and construct their twists, H μ , t over quadratic fields, and H ˜ ( μ , t ) , μ , t Q over the Galois closures of cubic fields. We also show that H μ is a twist of H ˜ ( μ , t ) over the related cubic field when the quadratic field is contained in the Galois closure of the cubic field. We utilize a cubic polynomial, R ( t ; X ) : = X 3 + t X + t , t Q - { 0 , - 27 / 4 } , to parametrize all of quadratic fields and cubic ones. It should be noted that H ˜ ( μ , t ) is a twist of H μ as algebraic curves because it may not always have any rational points...

Page 1

Download Results (CSV)