On quadratic stochastic processes.
We prove an abstract selection theorem for set-valued mappings with compact convex values in a normed space. Some special cases of this result as well as its applications to separation theory and Hyers-Ulam stability of affine functions are also given.
The classical Steinhaus theorem on the Minkowski sum of the Cantor set is generalized to a large class of fractals determined by Hutchinson-type operators. Numerous examples illustrating the results obtained and an application to t-convex functions are presented.
Sufficient and necessary conditions are presented under which two given functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π-concave). As special cases several old and new separation theorems are obtained.
Some properties of strongly Wright-convex functions are presented. In particular it is shown that a function f:D → ℝ, where D is an open convex subset of an inner product space X, is strongly Wright-convex with modulus c if and only if it can be represented in the form f(x) = g(x)+a(x)+c||x||², x ∈ D, where g:D → ℝ is a convex function and a:X → ℝ is an additive function. A characterization of inner product spaces by strongly Wright-convex functions is also given.
Page 1 Next