The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Continuum-wise expansive diffeomorphisms.

Kazuhiro Sakai — 1997

Publicacions Matemàtiques

In this paper, we show that the C interior of the set of all continuum-wise expansive diffeomorphisms of a closed manifold coincides with the C interior of the set of all expansive diffeomorphisms. And the C interior of the set of all continuum-wise fully expansive diffeomorphisms on a surface is investigated. Furthermore, we have necessary and sufficient conditions for a diffeomorphism belonging to these open sets to be Anosov.

Diffeomorphisms with weak shadowing

Kazuhiro Sakai — 2001

Fundamenta Mathematicae

The weak shadowing property is really weaker than the shadowing property. It is proved that every element of the C¹ interior of the set of all diffeomorphisms on a C closed surface having the weak shadowing property satisfies Axiom A and the no-cycle condition (this result does not generalize to higher dimensions), and that the non-wandering set of a diffeomorphism f belonging to the C¹ interior is finite if and only if f is Morse-Smale.

C¹-Stably Positively Expansive Maps

Kazuhiro Sakai — 2004

Bulletin of the Polish Academy of Sciences. Mathematics

The notion of C¹-stably positively expansive differentiable maps on closed C manifolds is introduced, and it is proved that a differentiable map f is C¹-stably positively expansive if and only if f is expanding. Furthermore, for such maps, the ε-time dependent stability is shown. As a result, every expanding map is ε-time dependent stable.

Page 1

Download Results (CSV)