On locally solid topological lattice groups
Let be a commutative Hausdorff locally solid lattice group. In this paper we prove the following: (1) If has the (iii)-property, then its completion is an order-complete locally solid lattice group. (2) If is order-complete and has the Fatou property, then the order intervals of are -complete. (3) If has the Fatou property, then is order-dense in and has the Fatou property. (4) The order-bound topology on any commutative lattice group is the finest locally solid topology on...