On the elements of prime power order in K₂ of a number field
If l is a prime number, the cyclotomic elements in the l-torsion of K₂(k(x)), where k(x) is the rational function field over k, are investigated. As a consequence, a conjecture of Browkin is partially confirmed.
Let F be a Galois extension of a number field k with the Galois group G. The Brauer-Kuroda theorem gives an expression of the Dedekind zeta function of the field F as a product of zeta functions of some of its subfields containing k, provided the group G is not exceptional. In this paper, we investigate the exceptional groups. In particular, we determine all nilpotent exceptional groups, and give a sufficient condition for a group to be exceptional. We give many examples of nonnilpotent solvable...
Page 1