In this article, we formalize the Advanced Encryption Standard (AES). AES, which is the most widely used symmetric cryptosystem in the world, is a block cipher that was selected by the National Institute of Standards and Technology (NIST) as an official Federal Information Processing Standard for the United States in 2001 [12]. AES is the successor to DES [13], which was formerly the most widely used symmetric cryptosystem in the world. We formalize the AES algorithm according to [12]. We then verify...
The binary set {0, 1} together with modulo-2 addition and multiplication is called a binary field, which is denoted by F2. The binary field F2 is defined in [1]. A vector space over F2 is called a binary vector space. The set of all binary vectors of length n forms an n-dimensional vector space Vn over F2. Binary fields and n-dimensional binary vector spaces play an important role in practical computer science, for example, coding theory [15] and cryptology. In cryptology, binary fields and n-dimensional...
In the [16] has been proven that the multiplicative group Z/pZ* is a cyclic group. Likewise, finite subgroup of the multiplicative group of a field is a cyclic group. However, finite subgroup of the multiplicative group of a field being a cyclic group has not yet been proven. Therefore, it is of importance to prove that finite subgroup of the multiplicative group of a field is a cyclic group.Meanwhile, in cryptographic system like RSA, in which security basis depends upon the difficulty of factorization...
In [11], the definitions of forward difference, backward difference, and central difference as difference operations for functions on R were formalized. However, the definitions of forward difference, backward difference, and central difference for functions on vector spaces over F have not been formalized. In cryptology, these definitions are very important in evaluating the security of cryptographic systems [3], [10]. Differential cryptanalysis [4] that undertakes a general purpose attack against...
In this article, we formalize that every finite cyclic group is isomorphic to a direct product of finite cyclic groups which orders are relative prime. This theorem is closely related to the Chinese Remainder theorem ([18]) and is a useful lemma to prove the basis theorem for finite abelian groups and the fundamental theorem of finite abelian groups. Moreover, we formalize some facts about the product of a finite sequence of abelian groups.
In [6] it was formalized that the direct product of a family of groups gives a new group. In this article, we formalize that for all j ∈ I, the group G = Πi∈IGi has a normal subgroup isomorphic to Gj. Moreover, we show some relations between a family of groups and its direct product.
Download Results (CSV)