The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove criteria for relative compactness in the space of set-valued measures whose values are compact convex sets in a Banach space, and we generalize to set-valued measures the famous theorem of Dieudonné on convergence of real non-negative regular measures.
We prove an analogue of Topsøe's criterion for relative compactness of a family of probability measures which are regular with respect to a family sets. We consider measures whose values are compact convex sets in a locally convex linear topological space.
Download Results (CSV)