Divisors of the Euler and Carmichael functions
If n is a positive integer such that ϕ(n)σ(n) = m² for some positive integer m, then m ≤ n. We put m = n-a and we study the positive integers a arising in this way.
We improve known bounds for the maximum number of pairwise disjoint arithmetic progressions using distinct moduli less than x. We close the gap between upper and lower bounds even further under the assumption of a conjecture from combinatorics about Δ-systems (also known as sunflowers).
Page 1