The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a formula for the parity of the Maslov index of a triple of Lagrangian subspaces of a skew symmetric bilinear form over ℝ. We define an index two subcategory (the even subcategory) of a 3-dimensional cobordism category. The objects of the category are surfaces equipped with Lagrangian subspaces of their real first homology. This generalizes a result of the first author where surfaces are equipped with Lagrangian subspaces of their rational first homology.
Download Results (CSV)