A learning paradigm for motion control of mobile manipulators
Motion control of a mobile manipulator is discussed. The objective is to allow the end-effector to track a given trajectory in a fixed world frame. The motion of the platform and that of the manipulator are coordinated by a neural network which is a kind of graph designed from the kinematic model of the system. A learning paradigm is used to produce the required reference variables for each of the mobile platform and the robot manipulator for an overall coordinate behavior. Simulation results are...