The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
PrefaceLet A be a commutative Banach algebra with maximal ideal space ∆ and let ^: A → C₀(∆) be the Gelfand representation of A. If M is a Banach module over A, then a bounded linear map φ: M → M₀, will be called a representation of M of Gelfund type if M₀ is a Banach module over C₀(∆) and φ is ^-linear in the sense that φ(ax) = âφ(x) for all a ∈ A and x ∈ M. Two such representations have been studied previously. In [50] and [51] Robbins describes such a representation in which M₀, is taken to be...
Download Results (CSV)