Two applications of a bound on the Hadamard product with a Cauchy matrix.
It is shown that if A is a bounded linear operator on a complex Hilbert space, then 1/4 ||A*A + AA*|| ≤ (w(A))² ≤ 1/2 ||A*A + AA*||, where w(·) and ||·|| are the numerical radius and the usual operator norm, respectively. These inequalities lead to a considerable improvement of the well known inequalities 1/2 ||A|| ≤ w(A) ≤ || A||. Numerical radius inequalities for products and commutators of operators are also obtained.
It is shown that if A is a bounded linear operator on a complex Hilbert space, then , where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.
We give several sharp inequalities involving powers of the numerical radii and the usual operator norms of Hilbert space operators. These inequalities, which are based on some classical convexity inequalities for nonnegative real numbers and some operator inequalities, generalize earlier numerical radius inequalities.
A spectral radius inequality is given. An application of this inequality to prove a numerical radius inequality that involves the generalized Aluthge transform is also provided. Our results improve earlier results by Kittaneh and Yamazaki.
We derive several numerical radius inequalities for 2 × 2 operator matrices. Numerical radius inequalities for sums and products of operators are given. Applications of our inequalities are also provided.
We prove numerical radius inequalities for products, commutators, anticommutators, and sums of Hilbert space operators. A spectral radius inequality for sums of commuting operators is also given. Our results improve earlier well-known results.
Page 1